
Agent
An agent is anything that can be viewed as perceiving its environment through sensors

and acting upon that environment through effectors.

Environment

Agent

Sensor Actors / effectors
Jyoti Lakhani

Agent

The job of AI is to design the agent program.

Agent program is a function that implements the mapping from percepts to actions.

A problem is-

 a collection of information

 that will the agent use

 to decide

what to do.

1. The initial state that the agent knows itself to be in

2. Set of possible actions available to the agent, called Operators

3. The state space of the problem: The set of all states reachable from the initial state

by any sequence of actions.

4. A path in the state space is simply any sequence of actions leading from one state to

another.

5. The goal test, which the agent can apply to a single state description to determine if

it is a goal state

6. A path cost function is a function that assigns a cost to a path.

Together, the initial state, operator set,

goal test, and path cost function define

a problem.

Jyoti Lakhani

Measuring problem-solving performance

The effectiveness of a search can be measured in at least three ways -

First, does it find a solution at all?

Second, is it a good solution (one with a low path cost)?

Third, what is the search cost associated with the time and memory required to find a solution?

The total cost of the search is-

The sum of the path cost + The search cost.

SEARCHING FOR SOLUTIONS

finding a solution—is done by a search through the state space

•applying the operators to the current state

•thereby generating a new set of states.

•The process is called expanding the state

This is the essence of search—choosing one option and putting the others aside for later, in

case the first choice does not lead to a solution.

 Jyoti Lakhani

Search Strategy
The Search Strategy determines which state to expand first.

It is helpful to think of the search process as building up a search tree that is

superimposed over the state space.

•The root of the search tree is a search node corresponding to the initial state.

•The leaf nodes of the tree correspond to states that do not have successors in the tree,

either because they have not been expanded yet, or because they were expanded, but

generated the empty set.

•At each step, the search algorithm chooses one leaf node to expand.

Jyoti Lakhani

Problem Solving As Search

Initial State

State 2

State 3

State 4

State 1
State 5

State 6

State 7

State 8

State 9

State 10

State 11

State 12

State 13

State 14

State 15

State 16

State 17

State 18

State 19

State 20
Jyoti Lakhani

Data-Driven Search Goal-Driven Search

Data-driven search starts from an

initial state and uses actions that are

allowed to move forward until a goal is

reached. This approach is also known as

forward chaining.

Alternatively, search can start at the goal and

work back toward a start state, by seeing what

moves could have led to the goal state. This is

goal-driven search, also known as backward

chaining.

goal-driven search is preferable to data driven search

Goal-driven search and data-driven search will end up producing the same results, but

depending on the nature of the problem being solved, in some cases one can run more

efficiently than the other

Goal-driven search is particularly useful in situations in which the goal can be clearly

specified (for example, a theorem that is to be proved or finding an exit from a maze).

It is also clearly the best choice in situations such as medical diagnosis where the goal (the

condition to be diagnosed) is known, but the rest of the data (in this case, the causes of

the condition) need to be found.

There are two main approaches to searching a search tree-

Jyoti Lakhani

Data-driven search is most useful when the initial data are provided, and it is not clear

what the goal is.

It is nearly always far easier to start from the end point and work back toward the

start point. This is because a number of dead end paths have been set up from the

start (data) point, and only one path has been set up to the end (goal) point. As a

result, working back from the goal to the start has only one possible path.

Initial State

Goal State

Goal State

Initial State

Data Driven Search

Or

Forward Chaining

Goal Driven Search

Or

Backward Chaining
Jyoti Lakhani

Search Methodologies

OR

Search Techniques

1. Generate and Test

2. Depth First Search

3. Breath First Search

Un- Informed Informed

Brute Force Search

No Information Required Additional Information required

 i.e. called Heuristics

Informed

Techniques are

more intelligent

than Un-informed

techniques

We are talking

about

Methodologies

not methods

SiMpLeSt

CoMmOn

AlTeRnAtIvE
Jyoti Lakhani

Generate and Test

Or Brute Force Search

•Simplest Approach

• Examine every node in the tree until it finds a goal

•Solve problems where there is no additional information about

how to reach a solution.

State Space

1

4

2

6

8

3

7

5

1

4

6

8

3

7

5

Goal State

Jyoti Lakhani

To successfully operate

 Generate and Test needs to have a suitable

Generator

with three properties-

1. It must be complete

2. It must be non-redundant

3. It must be well informed

It must generate every possible solution

It should not generate the same solution twice

It should only propose suitable solutions and

should not examine possible solutions that do not

match the search space

Jyoti Lakhani

Depth-First Search

it follows each path to its

 greatest depth
 before moving on to the next path

A

B C

D F E

G H I J K L

Goal State

Initial State

Current State Search Tree

Blind End

Jyoti Lakhani

Depth-first search is often used by computers for search problems

such as locating files on a disk, or by search engines for spidering

the Internet.

A

B C

D F E

G H I J K L

1

2

3

4 5

6

7

8 9

10

Search Sequence A B D G H C E I J F

Jyoti Lakhani

Jyoti Lakhani

Depth First Algorithm

Function depth ()

{

 queue = []; // initialize an empty queue

 state = root_node; // initialize the start state

 while (true)

 {

 if is_goal (state)

 then return SUCCESS

 else add_to_front_of_queue

 (successors (state));

 if queue == []

 then report FAILURE;

 state = queue [0]; // state = first item in

 queue

 remove_first_item_from (queue);

 }

}

Breadth-First Search
This approach involves traversing a tree by breadth rather than by depth.

The breadth-first algorithm starts by examining all nodes one

level (sometimes called one ply) down from the root node.

A

B C

D F E

G H I J K L

Ply 1

Ply 2

Ply 3

Ply 4

Jyoti Lakhani

IF goal Then

 success

Else

 search continues to the next ply

Else

 Fail

Breadth-first search is

a far better method to

use in situations

where the

tree may have very

deep paths

Breadth-first search is a poor idea in trees where all paths lead to a

goal node with similar length paths

A

B C

D F E

G H I J K L

1

2 3

4 5 6

Jyoti Lakhani

Jyoti Lakhani

Search Sequence

A

B C

D F E

G H I J K L

1

2 3

4 5 6

A B D G H C E I J F

Jyoti Lakhani

Breadth First Algorithm

Function breadth ()

{

queue = []; // initialize an empty queue

state = root_node; // initialize the start state

 while (true)

 {

 (state if is_goal)

 then return SUCCESS

 else add_to_back_of_queue

 (successors (state));

 if queue == []

 then report FAILURE;

 state = queue [0];

 remove_first_item_from (queue);

 }

}

Jyoti Lakhani

Scenario Depth First Search Breath First Search

Some paths are extremely

long, or even infinite

Performs badly Performs well

All paths are of similar length Performs well Performs well

All paths are of similar length,

and all

paths lead to a goal state

Performs well Wasteful of time and

memory

High branching factor Performance depends on

other factors

Performs poorly

Difference Between Depth and Breadth First Search

Function: SUCCESSOR(State)

If GOAL STATE

 SUCCESS

 EXIT
Jyoti Lakhani

Implementing Breadth-First Search

Variable : CURRENT

Queue: STATES

B

A

A

B C

D F E

G H I J K L

Current State
Goal Test

A

C D

Jyoti Lakhani

Step Current

State

Queue Comment

1 A [] Queue Empty

2 A [BC] A is not a Goal State,

Expend A

3 B [C] B is Current State

4 B [CD] B is not a Goal State,

Expend B

5 C [D]

6 .

.

.

7

Jyoti Lakhani

Implementing Depth-First Search

Variable : CURRENT

Function: SUCCESSOR(State)

Stack: STATES

A

B C

D F E

G H I J K L

Current State

Goal Test

Jyoti Lakhani

Properties of Search Methods

• Space Complexity

• Time Complexity

Complexity

Depth-first search is very efficient in

space because it only needs to store

information about the path it is

currently examining

 But it is not efficient in time because it

can end up examining very deep

branches of the tree.

Jyoti Lakhani

Completeness

A Search Method should guaranteed to find a goal

state if one exists

Properties of Search Methods

Breadth-first search is complete, but depth-first

search is not because it may explore a path of

infinite length and never find a goal node that

exists on another path.

Jyoti Lakhani

A search method is optimal if it is guaranteed to find
the best solution that exists.

Optimality

Properties of Search Methods

Breadth-first search is an optimal search method, but

depth-first search is not.

 Depth-first search returns the first solution it happens to

find, which may be the worst solution that exists.

 Because breadth-first search examines all nodes at a

given depth before moving on to the next depth, if it

finds a solution, there cannot be another solution before

it in the search tree.

Jyoti Lakhani

 Irrevocability

Properties of Search Methods

Methods that use backtracking are described as tentative

Methods that do not use backtracking, and which

therefore examine just one path, are described as

irrevocable.

Depth-first search is an example of tentative search.

Jyoti Lakhani

Using Heuristics for Search: Informed Search

Depth-first and breadth-first search were described as brute-force

search methods.

 This is because they do not employ any special knowledge of the

search trees they are examining

but simply examine every node in order until the goal.

This kind of information is called a heuristic

Heuristics can reduce an impossible problem to a relatively simple

one.

Heuristic Search Uses a Heuristic Evaluation Function or

Heuristic Function

Jyoti Lakhani

Heuristic Function

Heuristic Function apply on a Node

It will Give the Estimate of Distance of goal from Node

H(Node) = Distance of Node from Goal

Suppose there are two nodes m and n and
 H(m,g) < H(n,g)

m is more likely to be on an optimal path to the goal node than n.

Jyoti Lakhani

A

B C

D F E

G H I J K L

H(A, F) = H(A, C) + H(C, F)

H(A,C)
H(C, F)

Suppose “ F “ is the Goal node

Heuristic Estimate from A to Goal node F is the Summation of –

H(A,C) and H(C,F)

In choosing heuristics, we usually consider

that a heuristic that reduces the number of

nodes that need to be examined in the

search tree is a good heuristic.

Jyoti Lakhani

More than One Heuristics can be applied to the same search

A

B C

D F E

G H I J K L

Suppose we have to Reach the Goal Node , which is F

H1 (A, F) H2 (A, F)

H2 (node, Goal) ≥ H1 (node, Goal)

H2 dominates H1

Which means that a search method using heuristic h2 will

always perform more efficiently than the same search method using h1.

Jyoti Lakhani

Informed Searches Hill Climbing

Best First Search

Branch and Bound A*
Beam Search

AO*

In examining a search tree,

 hill climbing will move to the first successor node

 that is “better” than the current node

—in other words, the first node that it comes across with a heuristic value lower than

that of the current node.

Hill Climbing

If all directions lead lower than your current position, then you stop and assume

you have reached the summit. As we see later, this might not necessarily always

be true.

Jyoti Lakhani

Steepest Ascent Hill Climbing

Similar to Hill Climbing

Except that rather than moving to the first position you find that is higher

than the current position

you always check around you in all four directions and choose the

position that is highest.

Jyoti Lakhani

Three Problems with Hill Climbing

1. Local Maxima or Foot Hill

Global Maxima
Local Maxima

A local maximum is a part of the search space

 that appears to be preferable to the parts around it,

 but which is in fact just a foothill of a larger hill

Jyoti Lakhani

Three Problems with Hill Climbing

2. Plateau

Maximum

Plateau

A plateau is a region in a search space where all the

values are the same

Jyoti Lakhani

Three Problems with Hill Climbing

3. Ridge

A ridge is a long, thin region of high land with low land on either side.

Jyoti Lakhani

Best First Search

Depth First Search is good becoz it –

 Found solution without expanding all competing branches

= Features of Depth First Search

+

Features of Breadth First Search

Breadth First is good becoz it –

 Does not get trapped on dead end paths

Best First search combine both these characters

At each step of Best First Search process

 select the most promising nodes,

 we have generated so far

Jyoti Lakhani

A

B C

D F E

G H I G K G

Best First Search

50 80

Current Node

f(n)= h(n)

20

10

Jyoti Lakhani

Beam Search

Same like Best First Search,

 but n promising states are kept for future considerations

A* Algorithm

Variation of Best First Search

Along each node

 on a path to the goal,

 A* generates all successor nodes and

 estimates the distance (cost)

 from the start node to the goal node

Jyoti Lakhani

A * Combines the cost so far and the estimated cost to the goal

That is evaluation function f(n) = g(n) + h(n)

An estimated cost of the cheapest solution via n

Jyoti Lakhani

A

B C

D F E

G H I G K G

A* Search

50 h(n)=80 g(n)=0

Current Node

f(n)= g(n) + h(n)

 h(n)=20

g(n)= 50

h(n)=10

g(n)= 50

Jyoti Lakhani

Jyoti Lakhani

Jyoti Lakhani

Jyoti Lakhani

Jyoti Lakhani

Jyoti Lakhani

Jyoti Lakhani

A* (Start, Goal)

{

 CLOSE={ }

 OPEN= { root }

 g[root] = 0
 f [root]

}

